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 Forecasting of species and ecosystem responses to novel conditions, including climate change, is one of the major challenges 
facing ecologists at the start of the 21st century. Climate change studies based on species distribution models (SDMs) have 
been criticized because they extend correlational relationships beyond the observed data. Here, we compared conventional 
climate-based SDMs against ecohydrological SDMs that include information from process-based simulations of water 
balance. We examined the current and future distribution of  Artemisia tridentata  (big sagebrush) representing sagebrush 
ecosystems, which are widespread in semiarid western North America. For each approach, we calculated ensemble models 
from nine SDM methods and tested accuracy of each SDM with a null distribution. Climatic conditions included current 
conditions for 1970–1999 and two IPCC projections B1 and A2 for 2070–2099. Ecohydrological conditions were assessed 
by simulating soil water balance with SOILWAT, a daily time-step, multiple layer, mechanistic, soil water model. Under 
current conditions, both climatic and ecohydrological SDM approaches produced comparable sagebrush distributions. 
Overall, sagebrush distribution is forecasted to decrease, with larger decreases under the A2 than under the B1 scenario and 
strong decreases in the southern part of the range. Increases were forecasted in the northern parts and at higher elevations. 
Both SDM approaches produced accurate predictions. However, the ecohydrological SDM approach was slightly less accu-
rate than climatic SDMs ( – 1% in AUC,  – 4% in Kappa and TSS) and predicted a higher number of habitat patches than 
observed in the input data. Future predictions of ecohydrological SDMs included an increased number of habitat patches 
whereas climatic SDMs predicted a decrease. ! is diff erence is important for understanding landscape-scale patterns of 
sagebrush ecosystems and management of sagebrush obligate species for future conditions. Several mechanisms can explain 
the diverging forecasts; however, we need better insights into the consequences of diff erent datasets for SDMs and how 
these aff ect our understanding of future trajectories.   

 Eff ects of recent climate change on species are reported for 
many ecosystems (Parmesan and Yohe 2003, Menzel et al. 
2006) and include responses in species interactions, phenol-
ogy, distribution, and abundance (Shafer et al. 2001, Gilman 
et al. 2010). Forecasting the eff ects of future climate change 
on species is essential to inform natural resource manage-
ment and conserve ecosystem biodiversity (Jackson et al. 
2009, Wiens et al. 2009). Important, and uncertain, ele-
ments of climate change include the magnitude of change 
in climatic conditions and the response of species, popula-
tions and ecosystems. In particular, ecological forecasting of 
these responses of the biota to novel situations needs to be 
improved considerably (! uiller et al. 2005, Hijmans and 
Graham 2006, Zimmermann et al. 2009). 

 Species distribution models (SDMs) are valuable tools 
for investigating how species and ecosystems may respond 
to future climates because they statistically characterize the 
relationship between species occurrence and climatic con-
ditions (Hijmans and Graham 2006, Elith and Leathwick 
2009, Franklin and Miller 2009). SDMs extrapolate species 

distribution data in space and time based on a statistical 
model between species occurrence data and environmental 
data (Franklin and Miller 2009). SDMs have been used suc-
cessfully for habitat suitability mapping for resource man-
agement and conservation (Carvalho et al. 2010), assessing 
biological invasions (Robinson et al. 2010), and forecasting 
future ranges of species (Zimmermann et al. 2009). 

 SDMs have been criticized because they are correlational 
models and lack realistic representations of the species ’  
ecology (Guisan et al. 2006, Elith and Leathwick 2009, 
Hickler et al. 2009). Several studies have responded to these 
limitations by attempting to incorporate biotic interactions 
(Gilman et al. 2010), migration limitation (Engler and 
Guisan 2009), and process-based representations of resource 
availability (Kearney and Porter 2009, Morin and ! uiller 
2009, Buckley et al. 2010). 

 ! e environmental datasets used in SDMs are assumed 
to describe species requirements and limitations at an 
appropriate spatial scale, or at least are good proxies thereof 
(Franklin and Miller 2009). However, most studies don ’ t 
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test the sensitivity of a species to the environmental variables 
used for building SDMs (Austin 2002, 2007) and spurious 
projections of such SDMs are reported, e.g. for climatic vari-
ables (used in SDMs for plants and birds, Beale et al. 2008, 
Chapman 2010). An additional criticism of SDMs is that 
correlational species–environmental relationships are pro-
jected onto novel situations assuming a constant relation-
ship between the species and the environmental variables 
and an unchanging set of constant limitations of the distri-
bution of the species (Elith and Leathwick 2009, Kearney 
and Porter 2009, Wiens et al. 2009). 

 Spatial and temporal patterns of soil water availability 
exert important control over species distributions, and incor-
porating these patterns into SDMs may represent a substan-
tial improvement beyond traditional bioclimatic models 
(Austin 2007). Several studies incorporated variables related 
to water availability with estimates of diff ering degrees of 
sophistication. ! e simplest alternative is to derive variables 
of water availability directly from climatic variables, such as 
total annual precipitation or summed monthly diff erences 
between potential evapotranspiration and precipitation (Skov 
and Svenning 2004). Simple soil water models, incorporat-
ing some soil information, estimated annual water defi cit or 
related variables with some success (Leathwick et al. 1996, 
Leathwick and Whitehead 2001, Austin 2002, Guisan et al. 
2007). However, Hickler et al. (2009) using LPJ-GUESS, 
a process-based dynamic global vegetation and vegetation 
dynamics model (Smith et al. 2001), concluded that although 
simple indicators of water availability may suffi  ce under cur-
rent climates, process-based water balance estimates will be 
needed for future projections. LPJ-GUESS was also used to 
estimate the water balance in a temperate-humid environ-
ment in Europe, which was used in a comparison of climatic 
and vegetation-based SDMs (Rickebusch et al. 2008), but 
only two soil layers represented soil water (Smith et al. 2001). 
Water balance presents a good case study to explore the value 
of process-based representations in SDMs especially for future 
climates as they are predicted to become hotter and drier and 
water availability more limiting (Karl et al. 2009). However, 
it remains unclear how detailed and how accurate process-
based water balance estimates need to be to meet require-
ments of SDMs, particularly for future projections. 

 Available soil water is an important link between abiotic 
and biotic processes that connects climatic conditions with 
vegetation occurrence. Furthermore, water is one of the 
most important limiting factors in arid and semiarid regions 
which cover ca 30% of global land area (Peel et al. 2007). 
Water availability is a major determinant of net primary 
production and plant functional composition (Noy-Meir 
1973, Sala et al. 1997). For instance, changes in water avail-
ability and allocation in a hotter and drier future climate as 
modeled for a Namibian thornbush savanna could lead to a 
competitive advantage of shrubs over grasses (Tietjen et al. 
2010). Consequently, accurate predictions of future species 
distributions require precise mapping of soil water avail-
ability patterns in space and time, i.e. the ecohydrological 
niche (Schlaepfer et al. 2011), especially in arid and semiarid 
ecosystems that are heavily water limited (Loik et al. 2004, 
Lauenroth and Bradford 2006). 

 We used sagebrush ecosystems as our test system to com-
pare approaches using a climatic dataset with approaches 

integrating detailed soil water availability patterns into 
SDMs. Sagebrush ecosystems are one of the most wide-
spread semiarid ecosystem types in the western United 
States and play an important role in the hydrologic cycle 
of these water-limited regions (McArthur and Plummer 
1978, West and Young 2000). ! ey are described as sensitive 
to the availability of water during summer dry periods in 
deep soil layers and to the recharge of these deep soil layers, 
which is most commonly provided by snowmelt in spring 
or cold-season precipitation (Loik et al. 2004, Williams 
et al. 2009, Schlaepfer et al. 2011). ! e shrub  Artemisia 
tridentata  (big sagebrush) is the most frequent of several 
 Artemisia  species that are dominants of sagebrush ecosys-
tems. Our analysis focused on ecosystems dominated by 
 A. tridentata . ! ese ecosystems represent a crucial habitat for 
many vulnerable species, including  Centrocerus urophasianus  
(greater sage-grouse, Rowland et al. 2006). Livestock graz-
ing and increasingly recreation are the most common land 
uses. However, land use management, climate change and 
biological invasions are altering sagebrush ecosystems on a 
large scale (Bradley 2010). 

 Our main research objective was to compare SDMs based 
on climatic datasets with SDMs based on a detailed mecha-
nistic representation of the water balance for a test system 
sensitive to the patterns and dynamic of available soil water. 
Our intent was to understand how the addition of process-
based information of a relevant ecological resource infl uences 
the predictions made by SDMs. We used a high-resolution, 
multiple soil layer, mechanistic water simulation model to 
generate a dataset representing water balance of semi-arid 
ecosystems. Specifi cally, fi rst we compared the accuracies 
of current estimates of habitat suitability of sagebrush eco-
systems from SDMs based on climatic variables alone with 
SDMs that are based on a high-resolution simulation of 
water balance. Second, we compared predictions of SDMs 
based on the two diff erent datasets for habitat suitability of 
sagebrush ecosystems under future climate scenarios. When 
we state that we are interested in the response of sagebrush 
ecosystems we are not implying that we expect these ecosys-
tems to respond as a unit. Our interests are in the dominant 
species, big sagebrush, assuming that any ecosystem domi-
nated by big sagebrush, regardless of the exact composition 
of subordinate species, is a sagebrush ecosystem.  

 Methods 

 We focused on the 11 western states of the continental 
United States, a region containing almost all of the sage-
brush ecosystems (Fig. 1a, McArthur and Plummer 1978, 
West and Young 2000). All spatial data were re-projected 
to an equal area grid of 10  !  10 km 2  using a bilinear inter-
polation in ArcGIS 9.3.1 (ESRI, CA, USA). ! e extent of 
the study area was 3.07  !  10 6  km 2 , which resulted in 30 705 
10  !  10 km 2  grid cells.  

 Sagebrush ecosystem occurrence data 

 We inferred present potential distribution of sagebrush eco-
systems from regional GAP data (grid cells of 30  !  30 m 2 ) for 
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the western US (PNW ReGAP, SW ReGAP, and California, 
Scott 2007). We included those GAP vegetation types for 
which  A. tridentata  is a substantial component, i.e.  ‘ Inter-
Mountain Basins Big Sagebrush Steppe ’ ,  ‘ Inter-Mountain 
Basins Big Sagebrush Shrubland ’ , and  ‘ Inter-Mountain 
Basins Montane Sagebrush Steppe ’  (Schlaepfer et al. 2011). 
! e presence data set was created by randomly sampling 874 
10  !  10 km 2  grid cells. ! e probability of a grid cell being 
selected was directly proportional to the number of 30  !  
30 m 2  GAP cells of sagebrush ecosystems occurring in the 
selected cell to refl ect the fi ne-scale distribution of sagebrush 
ecosystems in the regional GAP data. ! e non-sagebrush 
ecosystems cells were used as a pool of absence data (Fig. 1a). 
For further model validation, we collected an independent 
dataset of species occurrence based on 1696 unique loca-
tions of herbarium specimens (list of accessed herbaria in 
Supplementary material Appendix 1, Table A1).   

 Climate scenarios 

 ! e climatic dataset included a current climate scenario for 
which we used the PRISM 800 m average monthly tempera-
ture and precipitation data for 1971–2000 (Supplementary 
material Appendix 1, Table A2, PRISM Climate Group 
2008). To represent future climates, we used emission sce-
nario families B1 and A2 for 2070–2099. ! e B1 scenario 
has a peak of global population in mid-21st century and rapid 
changes of the economy towards service and information, 
whereas A2 describes a world with high population growth 
and slow technological and economical change (Nakicenovic 
and Swart 2000). For both future climate scenarios, we used 
monthly 1/8th-degree downscaled ensemble median tem-
perature and precipitation predictions of 16 global circula-
tion models (accessed May 2010 from  " climatewizard.org # , 
Maurer et al. 2007).   

 Ecohydrological conditions from soil water modeling 

 Mechanistic soil water simulation modeling generated the 
ecohydrological dataset. For every climate scenario and 
every 10  !  10 km 2  grid cell, except those with missing data 
(e.g. water or rock surface, missing soil data, Fig. 2), we ran 
SOILWAT, a daily time step, multiple layer, process-based, 
soil water simulation model, assuming sagebrush vegetation. 
! e model was developed and tested in the semiarid western 
US shortgrass steppe (Parton 1978, Sala et al. 1992). We 
adapted it for use in sagebrush ecosystems by incorporating 
an improved calibrated snow module, the process of hydrau-
lic redistribution, estimations of sagebrush ecosystem-spe-
cifi c vegetation parameters and by testing it against fi eld 
measured data (Schlaepfer et al. 2011). SOILWAT uses daily 
weather, monthly vegetation and site-specifi c properties of 
each soil layer (lower layer limits: 5, 10, 20, 30, 40, 60, 80, 
100, 150 cm, CONUS-SOIL, Miller and White 1998) to 
simulate the daily ecosystem water balance. ! is comprises 
of interception by vegetation and litter, evaporation of inter-
cepted water, infi ltration and percolation in the soil profi le, 
bare-soil evaporation, transpiration from each soil layer, and 
deep drainage (Lauenroth and Bradford 2006, Schlaepfer 
et al. 2011). Outputs are daily, monthly and annual values of 
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  Figure 1.     Comparison between observed sagebrush ecosystem 
extent and estimated sagebrush ecosystem habitat suitability from 
SDMs. Darker green shades indicate a higher frequency of GAP 
30  !  30 m 2  grid cells with sagebrush ecosystem occurrence for each 
re-projected 10  !  10 km 2  grid cell) in our study area (bold line) of 
the western US (a). Black cells indicate the 874 random presence 
sites. Overlay of GAP sagebrush ecosystem distribution and SDMs 
binary consensus predictions of habitat suitability under current 
climate conditions (1970–1999, red shaded area) using climatic (b) 
and ecohydrological datasets (c). ! ese and all following maps have 
the Albers equal-area conic projection for the contiguous US.  
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monthly temperature changes and by multiplying with pre-
dicted average monthly precipitation changes for 2070–2099 
(see above), thereby maintaining current levels of variability. 
From the daily SOILWAT output from 30-yr simulations, 
we derived a dataset (Supplementary material Appendix 1, 
Table A2), which described sensitive aspects of sagebrush 

each water balance component (Parton 1978). To simulate 
the current ecohydrological conditions, we ran SOILWAT 
using weather data from 1970–1999 (Maurer et al. 2002). 
To simulate ecohydrological conditions under climate sce-
narios B1 and A2, we generated future daily weather from 
current daily weather conditions by adding predicted average 
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  Figure 2.     Maps of habitat suitability probabilities indicating predicted sagebrush ecosystem occurrence based on ensemble SDMs using the 
climatic dataset (a)–(c) and the ecohydrological dataset (d)–(f ) under climate scenarios that describe current 1970–1999 (a), (d), future B1 
(b), (e), and A2 (c), (f ) 2070–2099 conditions in our study area (bold line) of the western US. Black cells indicate data not available.  
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of: nine model classes  !  three climate scenarios  !  two 
datasets  !  ten random absence sets  !  eleven cross-calibration 
steps. Finally, we created six ensemble projections, one for 
each climate scenario and dataset, by generating probabil-
ity distributions across model classes and initial conditions 
(Ara ú jo and New 2007) using TSS as weights for the model 
classes with a weight decay of 1.6 (! uiller et al. 2009). We 
used TSS because of the criticism against AUC (e.g. depen-
dence on spatial model extent, Lobo et al. 2008) and Kappa 
(unimodal dependence on prevalence, Allouche et al. 2006). 

 We estimated the importance of the variables by calculat-
ing 1 minus the average correlation of the model prediction 
with predictions based on randomization, repeated 10 times, 
of the variable in question (! uiller et al. 2009).   

 Landscape metrics of simulated sagebrush 
distribution 

 We calculated class-level landscape metrics using FragStat 
v3.3 (McGarigal et al. 2002) for the forecasted distribution 
of sagebrush ecosystems by the six ensemble projections. We 
transformed the ensemble projections to binary  ‘ consensus 
projections ’  using a threshold that maximizes TSS (! uiller 
et al. 2009) and retained only the area for which no data were 
missing across datasets (mostly due to missing soil data).    

 Results 

 Model validation accuracy of both ensemble SDMs was 
excellent when measured with AUC, while Kappa and TSS 
indicated an excellent accuracy for the climatic SDM and a 
good accuracy for the ecohydrological SDM ( – 1% in AUC, 
 – 6% in Kappa and TSS, Table 1). Testing with the inde-
pendent dataset indicated a lower, but still good, accuracy 
than cross-calibration, likely due to a biased geographic 
distribution of herbarium specimens. All tested SDMs 
had signifi cantly higher model accuracies than expected by 
chance (Table 2). Accuracy measured by sensitivity and spec-
ifi city was excellent for both ensemble SDMs with a slight 
decrease for the ecohydrological SDM ( – 2% in AUC,  – 2% 
in Kappa and TSS, Table 2). 

 Under current conditions, both ensemble SDMs predicted 
areas of high suitability for sagebrush ecosystems of similar 
extent. ! e predicted areas were matching the GAP input 
data well, in particular in the central areas of sagebrush ecosys-
tems (Table 3, Fig. 1). Nevertheless, climatic SDMs produced 
omission errors (1 – 3%, Table 3) in areas of low sagebrush 
ecosystem density (as measured by 30  !  30 m 2  GAP cells 
per 10  !  10 km 2  cell) in mountainous areas (Cascades, Sierra 
Nevada, Coastal Range in southern California, Central Rocky 
Mountains, Greater Yellowstone Area, central Idaho, and cen-
tral Montana) and in low to medium density areas at the south-
ern range margin and in northeastern Montana (Fig. 1b). ! e 
commission errors (3 – 4%, Table 3) occurred in northwestern 
Montana, in several basins (Carson basin, Great Salt Lake and 
Desert, Canyonlands, and an area of northeastern Arizona and 
northwestern New Mexico), and in the foothills area of the 
northern Front Range in Colorado (Fig. 1b). ! e ecohydro-
logical SDMs produced omission errors (4 – 5%, Table 3) in 
low-density areas at the southern range margin and central 

ecohydrology that are variables describing the overall water 
balance and the relative contribution of components as well 
timing, distribution, and seasonality of soil water dynamics 
and dry periods (Schlaepfer et al. 2011). ! is ecohydrologi-
cal dataset was used as input for SDMs.   

 Sagebrush species distribution modeling 

 As modeling framework, we calculated ensemble forecasts 
by combining simulations across sets of initial conditions, 
model classes, model parameters, and boundary conditions 
(Ara ú jo and New 2007). We fi tted SDMs for nine model 
classes (generalised linear models, generalised additive mod-
els, classi fi cation tree analysis, arti fi cial neural networks, sur-
face range envelope, generalised boosting model, Breiman 
and Cutler ’ s random forest for classi fi cation and regression, 
mixture discriminant analysis, multiple adaptive regres-
sion splines) that are combined in the BIOMOD package 
(! uiller et al. 2009) for each dataset separately using the 
random 874 presence sites and an equal number of ran-
dom absences. Several model classes sample diff erent model 
parameters, e.g. random forest or artifi cial neural networks 
(Ara ú jo and New 2007). To sample diff erent initial condi-
tions, we repeated the analysis ten times drawing random 
absences from the pool of all absence cells. For each data-
set, we retained only those variables that were not highly 
correlated with another variable (pair-wise correlation coef-
fi cients  $  0.7, Supplementary material Appendix 1, Table 
A2, Leathwick et al. 2005). To sample further diff erent initial 
conditions, we ten-fold cross-calibrated the models using a 
random subset of 70% of the data and evaluated them with 
the remainder of the data and with the herbarium locations 
as independent data based on the true skills statistics (TSS, 
Allouche et al. 2006), the area under the curve (AUC) of 
the receiver operating characteristic (ROC) and Kappa. As 
alternative measures of accuracy, we also reported sensitiv-
ity (proportion of correctly predicted presences) and speci-
fi city (proportion of correctly predicted absences, Allouche 
et al. 2006) with a threshold that maximizes both sensitiv-
ity and specifi city. We repeated the data splitting for cross-
calibration 10 times to evaluate the model and added an 11th 
fi nal run combining the results. Additionally, we tested the sig-
nifi cance of each SDM by comparing the accuracy measures 
(AUC, Kappa, and TSS) against null distributions of their 
expected values (Raes and ter Steege 2007). We generated the 
null-models for each SDM where the presence dataset was 
randomly allocated to geographic locations. For each draw, 
we calculated the accuracy measures of the SDM generated 
from the random presence dataset. We repeated this for 1000 
random models and generated a frequency histogram of the 
accuracy measures. If the accuracy measures of the real SDMs 
were larger than the values of the 99th percentile of the gener-
ated null distribution, then we interpreted this as signifi cance 
indicating that the accuracy of the SDM is higher than can be 
expected from a chance relationship between presence of the 
species and the environmental predictor variables (Raes and 
ter Steege 2007). To sample diff erent boundary conditions, 
we then projected potential sagebrush ecosystem distribu-
tion with current and future B1 and A2 climate scenarios and 
based on either the climatic or the ecohydrological datasets. 
! ere was a total of 5940 SDMs based on all combinations 
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Cascades, central Idaho, southern Rocky Mountains, Greater 
Yellowstone Area, and also northern Montana (Fig. 1). ! e 
two ensemble SDMs diff ered also in the degree of predicted 
aggregation and fragmentation under current conditions 
(Table 3). ! e diff erences were driven mostly by the number 
of sagebrush ecosystem patches for which the ecohydrologi-
cal SDM forecasted a higher number than the climatic SDM 
which in turn was higher than the value of the GAP input data 
(Table 3, Fig. 1). 

 Under future climate scenarios, both ensemble SDMs fore-
casted small increases and substantial decreases of sagebrush 
occurrence (Table 3, Fig. 2, 3). Decreases were larger under 
the A2 scenario than under the B1 scenario (Table 3). ! e full 
extent of increases in sagebrush ecosystems could not be eval-
uated due to study area restrictions. Decreases were more fre-
quently forecasted for southern latitudes and lower elevations, 
whereas relative increases were mostly indicated for north-
ern latitudes and higher elevations (Fig. 4). Ecohydrological 
SDMs forecasted a larger decrease throughout the range and 
this decrease was forecasted not only at the southern range 
margin as did climatic SDMs. Ecohydrological SDMs pre-
dicted also a substantial increase in the number of sagebrush 
ecosystem patches (B1 vs current prediction,  % 18%; A2 vs 
current prediction,  % 29%), whereas climatic SDMs pre-
dicted a decrease (B1,  – 39%; A2,  – 30%). ! e combination 
of decrease in area and changes in patchiness lead to a strong 
disaggregation and fragmentation of the distributional range 
under future conditions based on the ecohydrological SDMs, 
whereas climatic SDMs prediction didn ’ t change in aggrege-
tation and fragmentation increased substantially only under 
the A2 scenario (Table 3, Fig. 2b–c, e–f ). 

 Variables that strongly infl uenced climatic SDMs included 
minimum temperature and diff erent aspects of precipitation 
(Table 4). Ecohydrological SDMs were driven by variables 
that describe time and amount of recharge in top soils, actual 
evapotranspiration, and timing of dry periods in top soils 
(Table 4).   

 Discussion  

 Strength and weaknesses of SDMs based on 
process-based soil water model variables versus 
SDMs based on climatic datasets 

 A model is a generalization of nature that can elucidate the 
logical consequences of the knowledge and assumptions 

Rocky Mountains and in low to medium density areas in the 
Greater Yellowstone Area, the Black Hill region in Wyoming, 
in the region of northern Oregon and southern Washington, 
and partially in northeastern Montana (Fig. 1c). ! e commis-
sion errors (5%, Table 3) occurred in northwestern and north-
eastern Montana, and in the northern part of the coastal range 
in California (Fig. 1c). Projections based on climatic SDMs 
tended to predict more suitable habitats at the southern range, 
eastern Washington and northern Oregon, and throughout the 
central areas of sagebrush ecosystems than those based on eco-
hydrological SDMs (Fig. 1). Ecohydrological SDMs predicted 
in turn more suitable habitats at range margins in mountain-
ous areas, such as Sierra Nevada, coastal range in California, 

  Table 1. Validation and accuracy assessments for the climatic and ecohydrological SDM approaches.  

Climatic SDM Ecohydrological SDM

Method AUC 1 Kappa 2,4 TSS 3,4 AUC 1 Kappa 2,4 TSS 3,4 

Validation based on the average of 10 cross-calibrations 0.99 0.90 0.90 0.97 0.84 0.84
Validation with independent data 0.96 0.81 0.81 0.95 0.75 0.75
Validation of the 11th run with all data 0.99 0.94 0.94 0.99 0.91 0.91
Sensitivity 0.97 0.99 0.98 0.95 0.96 0.96
Specifi city 0.97 0.96 0.96 0.95 0.95 0.95

    1 AUC values  &  0.9 indicate excellent, 0.8 – 0.9 good, 0.7 – 0.8 fair, and 0.5 – 0.7 null to poor prediction accuracy (Thuiller et al. 2009).   
  2 Kappa values  &  0.8 indicate excellent, 0.6 – 0.8 good, and 0.0 – 0.6 null to fair prediction accuracy (Thuiller et al. 2009).   
  3 TSS values  &  0.8 indicate excellent, 0.6 – 0.8 good, and 0.0 – 0.6 null to fair prediction accuracy (Allouche et al. 2006).   
  4 Kappa and TSS have identical validation values because the prevalence here was equal to 0.5.   

  Table 2. Signifi cance of SDMs tested by comparing accuracy mea-
sures (AUC, Kappa, and TSS) against null-distributions of their 
expected values bases on random models.  

Accuracy measures 
at the 99th 

percentile of null 
distributions based 
on 1000 random 

models
Accuracy measures 
of the real SDMs 2 

SDM method 1 AUC Kappa TSS AUC Kappa TSS

Climatic SDMs
ANN 0.63 0.20 0.20 0.99 0.93 0.93
CTA 0.89 0.65 0.65 0.99 0.93 0.93
GAM 0.57 0.12 0.12 0.99 0.88 0.88
GBM 0.70 0.31 0.31 0.98 0.86 0.86
GLM 0.57 0.11 0.11 0.98 0.88 0.88
MARS 0.58 0.13 0.13 0.99 0.89 0.89
SRE 3 NA 0.06 0.06 NA 0.72 0.72

Ecohydrological SDMs
ANN 0.68 0.27 0.27 0.99 0.90 0.90
CTA 0.91 0.69 0.69 0.97 0.88 0.88
GAM 0.59 0.14 0.14 0.97 0.82 0.82
GBM 0.75 0.38 0.38 0.99 0.87 0.87
GLM 0.58 0.12 0.12 0.97 0.82 0.82
MARS 0.61 0.16 0.16 0.97 0.80 0.80
SRE 3 NA 0.06 0.06 NA 0.55 0.55

    1 See text for abbreviations of SDM methods. RF and FDA models not 
included here because RF models produce a constant value of 1 if 
run on the whole dataset and FDA cannot be run successfully on the 
whole dataset (Thuiller et al. 2009).   
  2 A SDM performs signifi cantly better than expected by chance alone 
at a one-sided alpha of 1%, if the model accuracy value is larger 
than the 99th percentile of the null distribution of 1000 random 
models.   
  3 There is no AUC associated with SRE models, because these do not 
calculate probabilities of species occurrence (Thuiller et al. 2009).   
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predictions that cannot be supported or falsifi ed by data 
that are readily observable. Consequently, such models 
need to be validated under conditions that are observable 
and all assumptions used for future projections need to 
be scrutinized. 

built into the model, but model predictions are restricted 
to a domain specifi ed by the built-in relationships 
(Shugart 1984, Oreskes 2003). Using models to generate 
projections far into the future, i.e. forecasting impacts of 
climate change on a species ’  distribution in 100 yr, are 
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  Figure 3.     Maps of change in predicted sagebrush ecosystem area based on ensemble SDMs using the climatic dataset (a)–(b) and the eco-
hydrological dataset (c)–(d) between the current 1970 – 1999 climate and future B1 (a), (c) and A2 (b), (d) 2070–2099 climate scenarios in 
our study area (bold line) of the western US. Black cells indicate data not available.  

  Table 3. Measures of change and landscape metrics for the GAP input data and the climatic and ecohydrological SDMs under current climate 
(1970–1999) and two future climate scenarios (2070-2099).  

Climatic SDMs Ecohydrological SDMs

GAP 
input 

Current Current B1 A2 Current B1 A2

Number of sagebrush ecosystem patches 35 56 34 39 168 198 216
Extent of sagebrush ecosystem in western US (%) 62 49 48 36 47 35 33
Predicted change of extent relative to current scenario (%) NA NA –16 –27 NA –25 –31
Predicted change of extent (90%-confi dence interval) NA NA  – 43 to  – 9  – 52 to  – 18 NA  – 93 to  – 16  – 82 to  – 21
Predicted increase of extent relative to current (%) NA NA  % 6  % 5 NA  % 4  % 5
Predicted decrease of extent relative to current (%) NA NA  – 22  – 32 NA  – 29  – 36
Splitting index 1 7.9 13 19 28 15 32 37
Aggregation index 2 96 92 93 92 87 81 80

    1 The splitting index indicates the effective mesh number of sagebrush ecosystem patches and increases as the patches become more frag-
mented or increase in number (McGarigal et al. 2002).   
  2 The aggregation index equals 0 when the sagebrush ecosystem is maximally disaggregated and equals 100 when sagebrush ecosystem is 
maximally aggregated into a single, compact patch (McGarigal et al. 2002).   
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potential caveats: 1) a new model brings new assumptions, 
2) additional data are needed, e.g. soil and vegetation para-
meters, and 3) the spatial resolution of soil water models 
and SDMs should match. First, the soil water simulation 
model SOILWAT represents mechanistically the relevant 
water balance components of semi-arid ecosystems (Parton 
1978, Sala et al. 1992) and produces realistic high-resolution 
water budgets for sagebrush ecosystems (Schlaepfer et al. 
2011). ! erefore, we assumed that ecohydrological variables 
estimated by SOILWAT appropriately represented the causal 
relationships between water availability and sagebrush ecosys-
tems occurrence. Second, SOILWAT simulations were based 
on a simple vegetation model for an average sagebrush eco-
system based on literature estimates for monthly vegetation 
parameters (Schlaepfer et al. 2011). Soils were represented 
by the best data available, i.e. 1-km 2  gridded STATSGO data 
with several areas of missing data (CONUS-SOIL, Miller 
and White 1998). STATSGO is based on generalized map 
units composited of associated soil series with a minimum 
spatial resolution of ca 6 km 2  that leads to uncertainties in 
spatial and depth parameter estimates (Miller and White 
1998). ! ird, the spatial heterogeneity of soil processes is 
inherently much higher than that of climatic variables. 

 Our study addressed the importance of diff erent data-
sets for SDMs; we didn ’ t compare SDMs with other model 
approaches. Specifi cally, we tested the strengths and weak-
nesses of a dataset derived from a detailed high-resolution 
soil water simulation model with a traditional climatic 
dataset, and compared these with other SDMs based on 
estimates of water availability of diff ering sophistication 
from the literature. 

 Climatic variables were the fi rst environmental datasets 
to be used in SDMs; they remain the most commonly used 
variables in SDMs (Franklin and Miller 2009). ! ey are read-
ily available almost worldwide and provide a direct relation-
ship to assess climate change impacts. Climatic conditions 
describe patterns of species occurrence (Grinnell 1917). 
! is relationship holds true on at least larger spatial scales 
(Woodward 1987) because of autocorrelation over large dis-
tances of climatic variables (Koenig 2002). However, climatic 
variables are often only proxies for variables determining 
species occurrence, e.g. rainfall is a proxy of water availability 
(Austin 2007). Realized species distributions are restricted by 
other factors such as dispersal limitations on larger scales and 
biotic interactions, mostly on smaller scales. Consequently, 
the strength of the association between climate and species 
occurrence has been questioned (Beale et al. 2008, Chapman 
2010). Nevertheless, here we showed that climatic SDMs for 
sagebrush ecosystems in semi-arid regions produced accurate 
predictions under current conditions. 

 Ecohydrological variables can link climatic proxy vari-
ables to estimates of a more mechanistic relationship 
between environment and species occurrence (Austin 2007). 
However, ecohydrological variables cannot be measured in 
situ for entire regions of species distributions; thus, they 
need to be modeled by soil water simulations. ! is causes 
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  Figure 4.     Histograms of relative decrease (red, light lines) and increase 
(blue, dark) in predicted sagebrush ecosystem area based on ensemble 
SDMs using the climatic dataset (a)–(b) and the ecohydrological 
dataset (c)–(d) between the current 1970–1999 climate and future 
B1 (full lines) and A2 (hashed lines) 2070–2099 climate scenarios 
for each latitude (a), (c) and 200 m-elevational band (b), (d).  

  Table 4. Importance of the variables used for the SDMs based on the 
climatic and ecohydrological datasets under the present climate 
scenario.  

Variable Rank
Importance 
  (mean  '  SD)

Climatic dataset
Mean temperature of the coldest 

month ( ̊ C)
1 0.544  '  0.060

Summer month precipitation 
(Jun-Aug; mm)

2 0.331  '  0.041

Mean annual precipitation (mm) 3 0.132  '  0.020
Normalized mean annual 

temperature ( ̊ C)
4 0.041  '  0.010

Correlation coeffi cient between monthly 
precipitation and temperature

5 0.033  '  0.006

Coeffi cient of variation of monthly 
precipitation

6 0.033  '  0.004

Ecohydrological dataset
Time of maximum SWP of top soils 

(month)
1 0.210  '  0.029

Actual evapotranspiration (AET, mm) 2 0.146  '  0.022
Maximum of ASW in top soils (mm) 3 0.119  '  0.020
Start of dry periods of top soils (month) 4 0.102  '  0.021
Minimum of available soil water (ASW) 

in top soils (mm)
5 0.097  '  0.012

Correlation coeffi cient between PET and 
median SWP of bottom soils

6 0.078  '  0.006

Time of maximum soil water potential 
(SWP) in bottom soils (month)

7 0.055  '  0.013

Time of minimum SWP of top soils 
(month)

8 0.028  '  0.004

Ratio transpiration:AET 9 0.025  '  0.003
Correlation coeffi cient between PET and 

median SWP of top soils
10 0.025  '  0.003

Maximum of SWP of bottom soils (MPa) 11 0.014  '  0.002
Time of minimum SWP of bottom soils 

(month)
12 0.012  '  0.003

Minimum of SWP of bottom soils (MPa) 13 0.009  '  0.003
Start of dry periods of bottom soils 

(month)
14 0.007  '  0.002
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sampling scheme, cells with a higher density of sagebrush 
ecosystems sub-cells were selected with a higher probability 
which lead to an under-representation of low density areas. 
Accordingly, many omission errors occurred in low-density 
areas. However, if we superimposed a density threshold on 
the GAP data, the distribution becomes much patchier and 
starts to be better described by predictions of the ecohydro-
logical SDMs.   

 Future potential distribution of sagebrush 
ecosystems 

 Our SDMs incorporated several levels of uncertainty for 
forecasts of ecosystems dominated by big sagebrush occur-
rence. ! e fi rst is variation caused by model classes, which 
was accounted by averaging across nine SDM techniques that 
were tested against expectations under random processes, 
and variation caused by diff erent initial conditions, which 
was incorporated by multiple random sampling of absence 
data and by cross-validation. ! e second is uncertainty about 
future climatic conditions, which was taken into account by 
running SDMs for two contrasting climate change scenarios, 
each driven by consensus results from 16 GCMs. Because 
of the small sample of boundary conditions, our ensemble 
forecasts depend upon the median climate forecasts in those 
scenarios (Ara ú jo and New 2007) and should be taken as 
indicative rather than predictive of the possible future states 
of sagebrush ecosystem. 

 Even though ecohydrological SDMs performed slightly 
poorer than climatic SDMs in this study, their accuracy was 
still good and overall current predictions were comparable. 
A general geographic pattern of future sagebrush occurrence 
emerged from our analysis and is characterized by substan-
tial decreases in the southern part of the range and increases 
in the northern parts corroborating earlier results (Shafer 
et al. 2001, Bradley 2010). Our SDMs also forecasted small 
increases at higher elevations, e.g. at the interface with conif-
erous forest. ! ese areas of predicted change are candidates 
for monitoring early signs of sagebrush ecosystem responses 
to climate change. 

 Several factors infl uence sagebrush ecosystem distribu-
tion. Shafer et al. (2001) inferred that the simulated north-
ward shift in sagebrush was a response to increased minimum 
temperature. ! ey also suggested that a combination of 
increased transpiration in winter and changes in the precipi-
tation regime may lead to drier soils during the summer and 
to increased fi re frequency which both result in decreases of 
 A. tridentata  (Shafer et al. 2001). Bradley (2010) found a 
large-scale contraction of suitable habitat due to changes in 
summer precipitation and temperature. Our results from the 
climatic SDMs confi rmed that minimum temperature and 
precipitation regime are important factors determining pres-
ent and future occurrence of sagebrush ecosystems. Greatest 
increases in minimum temperature are predicted for the 
central and northeastern parts of the region, whereas great-
est decreases in summer precipitation are predicted for the 
northwestern part (Karl et al. 2009). Our results from the 
ecohydrological SDMs can provide a mechanistic interpreta-
tion for those changes by transforming climatic factors into 
ecosystem-relevant variables, i.e. the amount of available soil 

However, to ensure spatial comparability among climatic 
and ecohydrological datasets, we aggregated all data to the 
same spatial resolution which reduced information on soil 
heterogeneity. Spatial resolution infl uences the reliability of 
species occurrence data, particularly when the heterogeneous 
environmental conditions experienced by the species within 
the cells may not match well the aggregated environmen-
tal factors across cells (Skov and Svenning 2004, Franklin 
and Miller 2009). Nevertheless, the ecohydrological dataset 
reduced model accuracy and performance under current 
conditions slightly ( – 1% in AUC,  – 4% in Kappa and TSS). 
Additionally, it predicted a too high number of patches com-
pared to GAP input data. Our results apparently contradict 
theoretical expectations (Austin 2002, 2007) and earlier 
attempts incorporating mechanistic water balance represen-
tations into SDMs (Rickebusch et al. 2008).   

 Outlook on the use of SDMs 

 ! ere are several possible, mutually non-exclusive explana-
tions for the slightly poorer performance of our ecohydro-
logical SDMs of sagebrush ecosystems, which may suggest 
approaches to further improve SDMs in general. First, semi-
arid systems are overwhelmingly driven by water limita-
tions; for instance, actual evapotranspiration approximates 
mean annual precipitation (Lauenroth and Bradford 2006). 
! erefore, climatic variables dominate ecosystems and hence 
may adequately predict patterns of water availability well 
enough for successful distribution modeling. Second, occur-
rence of sagebrush ecosystems is not determined exclusively 
by ecohydrological factors, even though they are important 
drivers, thus the SDMs based on the ecohydrological dataset 
performed slightly worse. ! erefore, it appears promising to 
investigate a dataset combining climatic and ecohydrologi-
cal variables to which sagebrush ecosystems are sensitive. For 
instance, our results and an earlier study using SDMs for 
big sagebrush (Shafer et al. 2001) suggest minimum tem-
perature has a limiting physiological function (as shown in 
combination with drought stress for big sagebrush seedlings, 
Lambrecht et al. 2007). ! ird, on the gradient of sophistica-
tion of water balance estimates used in SDMs, our approach 
is at the higher end focusing on high-resolution soil infor-
mation, but not incorporating detailed vegetation dynamics 
such as in the use of LPJ-GUESS (Rickebusch et al. 2008). 
We may have hit an  ‘ intermediate-sophistication depression ’  
where simpler models represent transformed climatic vari-
ables and more complicated models incorporating vegeta-
tion dynamics represent necessary details we omitted here. 
Fourth, our accuracy measures may be incorrect because they 
are based on a comparison with the GAP vegetation data 
directly. ! e GAP data themselves are only model results of 
vegetation types and are not directly presence data of a spe-
cies. We also pooled presence data across sagebrush ecosys-
tems dominated by big sagebrush; however, big sagebrush 
shows considerable ecological and genetic variation at sub-
species level (McArthur and Sanderson 1999) which could 
have led the SDMs astray. Further, we compared model 
predictions against an aggregated GAP dataset with 10  !  10 
km 2  cells showing presence if only one of the 30  !  30 m 2  sub-
cells indicated sagebrush ecosystems. ! rough our random 
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 Important diff erences in the projected future suitable 
habitat of sagebrush ecosystems were evident between eco-
hydrological SDMs and climatic SDMs in magnitude of 
decrease and in patchiness and disaggregation at small and 
large spatial scales. Although the patchiness predicted by 
ecohydrological SDMs was already elevated under current 
conditions, the number of patches increased considerably 
under future climates whereas climatic SDMs suggested 
instead a decrease at roughly comparable predicted spatial 
extents of suitable habitat. ! e forecasts, particularly from 
the ecohydrological SDMs, suggest potential large spatial 
scale splitting of sagebrush ecosystems into several disjunct 
areas, i.e. Washington, Sierra Nevada area, areas in Oregon 
and northern Nevada, central Idaho, and an area in east-
ern Utah, Wyoming, Colorado, and eastern Montana (Fig. 
3, 4). Climatic SDMs forecast splitting into fewer, larger 
areas. ! ese diff erent forecasts for future habitat suitabil-
ity of sagebrush ecosystems have important consequences 
because patchiness, size of patches, and fragmentation 
are important factors infl uencing genetic structure and 
dynamics of populations and communities (Loveless and 
Hamrick 1984, Kareiva et al. 1990). For instance, sage-
brush obligate species, such as greater sage-grouse, require 
large patches of sagebrush ecosystem as habitat (Rowland 
et al. 2006). Furthermore, total number of species associ-
ated with sagebrush ecosystems is expected to decrease 
within each of the patches with decreasing area (He and 
Hubbell 2011). For big sagebrush itself, the splitting of its 
range into disjunct patches, could bear important genetic 
consequences. Big sagebrush is taxonomically divided into 
several subspecies with diverging ecological occurrence 
and physiological adaptations (Kolb and Sperry 1999, 
McArthur and Sanderson 1999, Lambrecht et al. 2007). 
Genetic distance among big sagebrush taxa could increase 
because of decreased genetic exchange among individuals 
from disjunct patches. Additionally, climate change may 
alter forces of natural selection, which could lead to further 
ecological divergence of big sagebrush in diff erent disjunct 
patches. Moreover, these consequences are exacerbated by 
other components of global change, such as land use and 
invasive species that further reduce suitable habitat and 
increase disaggregation of sagebrush ecosystems (Bradley 
2010). We are in need of a deeper understanding of what 
the diff erences between SDMs based on diff erent datasets, 
e.g. climatic and ecohydrological datasets, both valid, good, 
and reasonable approaches, signify to improve our insight of 
the precise trajectories and mechanisms of future change in 
species distribution.            
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